Direct Product of Bitonic Algebras
نویسندگان
چکیده
The purpose of this study is to construct the concept direct product bitonic algebras, and investigate some respective features. Also, commutative homomorphism are studied. Then notion algebras expanded finite family their qualifications practised.
منابع مشابه
A Formula for the Direct Product of Crossed Product Algebras
tive radius r. Let the center Xo be the sequence {&?}, and let 5 be chosen so large that 2~~ + 2~ s 2 + • • • k Q s. If we define xi as (ki, &2> ' * • » $j j8+i, is+2, • • • ), then xi belongs to K and limn fn(xi) = + °°Consequently xi cannot be a point of Up and this contradiction establishes U as a set of the f...
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملRepresentations of the Direct Product of Matrix Algebras
Suppose B is the unital algebra consisting of the algebraic product of full matrix algebras over an index set X. A bijection is set up between the equivalence classes of irreducible representations of B as operators on a Banach space and the σ-complete ultrafilters on X, Theorem 2.6. Therefore, if X has less than measurable cardinality (e.g. accessible), the equivalence classes of the irreducib...
متن کاملFamilies of Ultrafilters, and Homomorphisms on Infinite Direct Product Algebras
Criteria are obtained for a filter F of subsets of a set I to be an intersection of finitely many ultrafilters, respectively, finitely many κ-complete ultrafilters for a given uncountable cardinal κ. From these, general results are deduced concerning homomorphisms on infinite direct product groups, which yield quick proofs of some results in the literature: the Loś-Eda theorem (characterizing h...
متن کاملProduct of derivations on C$^*$-algebras
Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ad?yaman üniversitesi fen bilimleri dergisi
سال: 2022
ISSN: ['2146-586X', '2147-1630']
DOI: https://doi.org/10.37094/adyujsci.1049322